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RESULTS

FIGURE 2. Individual omics models demonstrated high classification 
performance for distinguishing PDAC from non‑cancer controls in 
the validation cohort.
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Metabolite 0.982 (0.922–1)
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Lipid 0.921 (0.852–0.989)
Metabolite 0.982 (0.96–1)

 
PDAC early-stage (I/II) validation result (subset of all-stage result) comprised 7 PDAC and 46 control 
subjects.

FIGURE 3. Comparison of individual omics models’ predicted class 
probabilities highlighted omics-specific class-probability ordering.
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The scaled, predicted PDAC or control class probabilities are shown for the validation set subjects. Each 
subject is linked across the models by gray lines.

 ■ Each of the omics models had changes in probability rank order 
from one model type to another even though overall performance 
was not significantly different between models (Figure 3)

 ■ The difference in model probability rank (Figure 3) coupled with the 
similarity of the models’ areas under the ROC curve (AUCs; Figure 2) 
suggest that each omics type may work synergistically to contribute 
distinct, useful information 

TABLE 2. The top 5 features for each omics type were selected for 
combined analyte GLMnet model creation.

Omics Type Feature IDa Proteinb (Gene)
Proteinsc NP4_GAGGQSMSEAPTGDHAPAPTR Q14767-LTBP2 (LTBP2)

NP3_TFVIIPELVLPNR Q9BYE9-CDHR2 (CDHR2)
NP2_TFVIIPELVLPNR Q9BYE9-CDHR2 (CDHR2)
NP3_DSC(UniMod:4)
TMRPSSLGQGAGEVWLR Q9BYJ0-FGFBP2 (FGFBP2)

NP3_DNC(UniMod:4) 
PHLPNSGQEDFDK P35442-TSP2 (THBS2)

Metabolitesd NEG_AICAR
POS_Cystine
NEG_CMP
NEG_Gentisate
POS_Creatine

Lipidsd NEG_PC(18:2_20:5)+AcO
POS_DAG(18:1_20:0)+NH4
NEG_PE(O-16:0_22:6)-H
NEG_PC(18:2_20:3)+AcO
POS_CER(d18:1/18:0)+H

RNAs ENST00000483727.5 NAe (ENSG00000078747)
ENST00000531734.6 Q01433-AMPD2 (AMPD2)
ENST00000437154.6 Q9UKQ2-ADA28 (ADAM28)
ENST00000531997.1 NAe (GLYATL1 pseudogene)
ENST00000424185.7 Q8IW45-NNRD (NAXD)

a Top features were selected from the ranked feature importance list for each individual omics type 
XGBoost model from the first 10x10 RCV. 

bUniProt identifier-UniProt protein name. 
c Nanoparticles from the Proteograph-based proteomics sample preparation platform are identified 
as NPx.

dNEG and POS refer to MS ionization mode during data acquisition.
eNo associated protein identifiers.

 ■ Inspection of the ranked importance plots suggested that the top 5 
features provide most of the discrimination performance (Table 2)

FIGURE 4. The combined top feature, multi‑omics model achieved 
high sensitivity and specificity for PDAC in the validation cohort.
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For the multi-omics (blue) and CA19-9 (red) models, performance in the validation subjects was plotted 
as a ROC curve. AUCs with 95% confidence intervals are annotated.

 ■ At 99% specificity, the observed sensitivity for the multi-omics 
model for all- and early-stage PDAC was 80.8% and 71.4%, 
respectively. The CA19-9 model had 69.2% and 57.1% sensitivity for 
all- and early-stage PDAC, respectively (Figure 4)

 ■ Although this preliminary study was neither intended nor powered 
to demonstrate superiority to CA19-9, the results are suggestive of 
such and will factor into future study designs

 ■ Differences in plasma levels of the 20 features between PDAC and 
non-cancer subjects suggest clinical development feasibility of 
these analytes (Figure 5)

 ■ Although some of the features of the final classifier have known 
links to PDAC, others do not yet have an established connection, 
which is expected from an unbiased, untargeted approach to multi-
omics data generation and evaluation 

FIGURE 5. Plasma levels of the 20 features from the multi‑omics 
model differ between PDAC and non-cancer subjects from the 
validation cohort. 
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Columns are ordered by feature importance (reducing importance from left to right). The second and 
third most important protein features comprise the same peptide, TFVIIPELVLPNR, as selected on 2 
distinct nanoparticles.

CONCLUSIONS

 ■ In this proof-of-concept study, we 
leveraged a broad, multi-omics profiling 
platform to identify novel combinations 
of analytes with both known and 
unknown relation to PDAC into a 
high-performance biomarker panel for 
detection and discrimination of PDAC 
from non-cancer controls

 ■ The manageable number of easily 
assayed analytes collected from blood 
draws makes this panel ideal for rapid 
development and clinical study

 ■ Results support the feasibility of this 
approach as a clinically useful test for 
PDAC, with potential for earlier detection 

INTRODUCTION 

 ■ Pancreatic cancer is currently the third leading 
cause of cancer-related mortality in the United 
States,1 and demographic trends suggest 
that it will become the second leading cause 
by 20302-4 

 ■ Pancreatic ductal adenocarcinoma (PDAC) 
and its variants compose more than 90% 
of pancreatic malignancies,4 but PDAC is 
challenging to detect as the onset of clinical 
symptoms typically coincides with the 
progression to invasive growth and loss of 
resective opportunity5 

 ■ The majority of PDAC cases are not 
detected until late stage, with 80-85% of 
initial presentations representing incurable 
locally advanced or metastatic unresectable 
disease6-7 

 ■ Multiple clinical and investigational markers 
are in use (eg, CA19-9)8; however, given 
the limited performance of those markers, 
the United States Preventive Services Task 
Force currently recommends against routine 
screening for PDAC9 

 ■ We hypothesize that a plurality of signal 
inputs, such as those for different types of 
blood analytes, may be necessary to detect 
PDAC early enough for interventions that 
improve patient survival

OBJECTIVE 

 ■ To develop and validate a multi-omics PDAC 
classification model utilizing a combination of 
orthogonal features (ie, proteins, metabolites, 
lipids, and RNAs) sampling a wide variety of 
physiological systems and pathways 
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METHODS

 ■ This case-controlled study was comprised of 63 diagnosis-aware, but treatment-naïve PDAC 
subjects (12 stage I, 8 stage II, 4 stage III, 36 stage IV, and 3 stage unknown) and 83 age- and 
sex-matched non-cancer control subjects enrolled across 16 clinical sites as part of an ongoing, 
IRB-approved, observational study

 ■ Unbiased liquid chromatography mass spectrometry (LCMS), multiplexed and targeted multiple 
reaction monitoring-LCMS, RNA-Seq, and ELISA assays were used to detect and quantify proteins, 
metabolites and lipids, RNAs, and CA19-9, respectively, from subject blood samples

 ■ Distinct cohorts of subjects were created for machine learning-based classification model training 
(ie, repeated cross-validation [RCV] and final model construction) and validation (Figure 1). 
The proportionality of PDAC cancer stages was maintained across cohorts

 ■ Univariate and multivariate exploratory data analysis (EDA) was performed for initial evaluation, and 
the significant differences included several features related to acute and inflammatory response. 
To improve classification specificity to PDAC, proteins were additionally filtered to remove features 
associated with high-abundance proteins (based on Human Plasma Proteome Project top 25%),10 
and both proteins and RNAs were filtered to remove any features associated with acute immune/
inflammatory response-related Gene Ontology Biological Process terms (Table 1)

 ■ We used a robust machine-learning modeling engine XGBoost, a gradient-boosted, ensemble-tree 
method, to construct individual classification models for each of the 4 omics types using 10 repeats 
of 10-fold cross-validation (10x10 RCV; Figure 1)

 ■ The 5 features that contributed most to each individual omic model were identified and used as 
input for a new RCV with a re-shuffling of the training subjects and a grid of 50 hyperparameter 
combinations to create a GLMnet regularized logistic regression model. This final, 20-feature, multi-
omics model was applied to the validation cohort to evaluate PDAC classification performance 
(Figure 1)

FIGURE 1. The classification modeling algorithm used a 2-tiered approach with a training cohort for analyte 
feature selection and model optimization and a validation cohort for performance assessment.
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TABLE 1. Pre-processing of omics data refined the number of features for each omics type.

Omics Type Feature Group Feature Count
Proteins Original 151,461

EDA 54,108

Classification 21,176

Metabolites Original 377

EDA 373

Classification 372

Lipids Original 898

EDA 898

Classification 879

RNAs Original 202,125

EDA 110,734

Classification 107,631

Original data counts represent raw omics data. EDA data counts reflect features filtered for presence in ≥25% of all 146 subject samples. 
Classification feature counts reflect features filtered for presence in ≥50% of at least 1 of the classes (PDAC or control) in the training 
subjects.


